Appendix A

4.9 GHz Mask Issues

Prepared for NPSTC Petition for Reconsideration 3rd Report & Order, FCC WTB Docket 00-32

by
Sean O'Hara
Syracuse Research Corporation

802.11 Standards

4.9 GHz 802.11 OFDM equipment is available now

- ... in Japan, giving a huge market to leverage
- 20 MHz Channels, with 10 MHz on the way
- Huge US chipset market for 5GHz, these can also be used at 4.9 GHz

ITS (DRSC) equipment will use 802.11 OFDM

- Also on 10 MHz channels, and another huge market
- Includes 5.9 GHz Public Safety Spectrum
- ...and comes with an enhanced MAC layer

There is more IEEE 802.11 work in progress

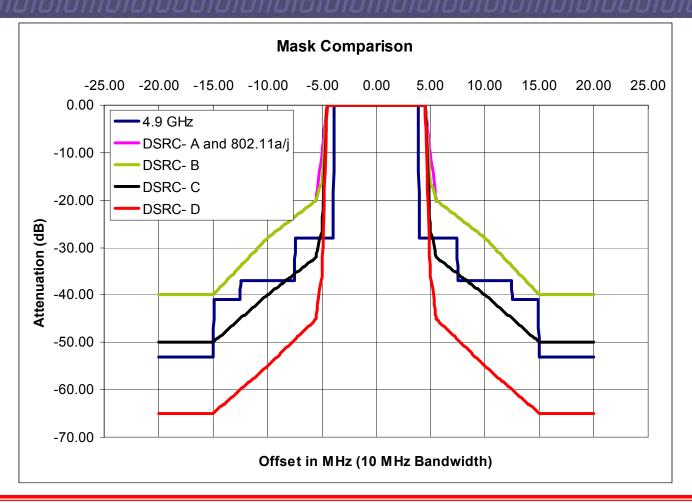
- Enhanced MAC with priority, authentication, and QoS (802.11e)
- Enhanced security (802.11i)
- Power Control and Dynamic Channel Selection (802.11h/k)
- 10 MHz Channels at 4.9 GHz (802.11j)
- 5 MHz bandwidth....(allows cellular reuse, 7 cell cluster plus one everywhere)



802 Standards

- Other exciting standards-based technologies may help in 4.9 GHz
 - Metropolitan area networks (MAN), 802.16, for site interconnect
 - MOBILE MAN, 802.16e and 802.20
- NPSTC has taken the initiative to get involved with IEEE 802 activities
 - To ensure that Public Safety requirements are considered to the greatest extent possible
 - To ensure that Public Safety is aware of "next gen" capabilities
 - To cooperatively interact with industry (they will support our recon)
- The key is to not limit our options
 - And to leverage larger markets to in order to obtain lower pricing and better capabilities

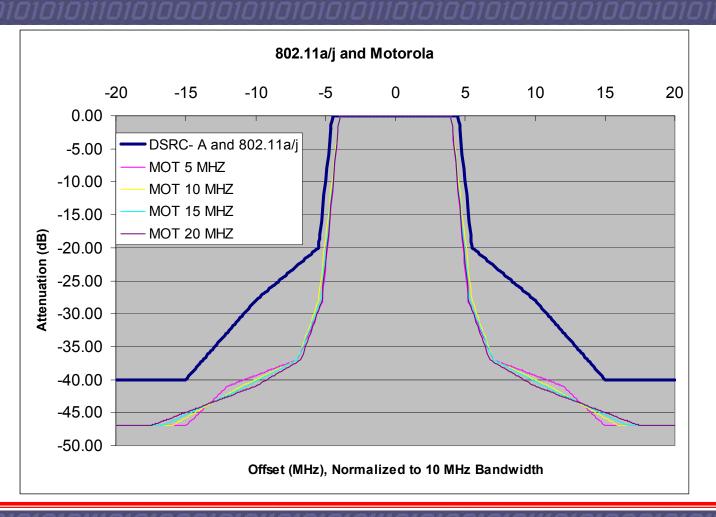
4.9 GHz FCC Mask


Mask scales to bandwidth

1 and 5 MHz channels available, can combine up to 20 MHz

4.9 GHz FCC Mask Comparison

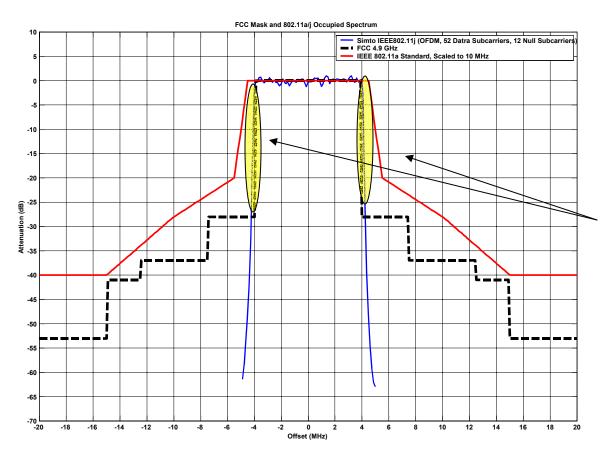
- to existing standards



The FCC Mask is much tighter than the 802.11a/j and DSRC masks

4.9 GHz FCC Mask Comparison

-Motorola filing and existing standards


The FCC Mask is similar to the one that Motorola recommended in their filing

i.e. much tighter than the 802.11a/j and DSRC masks

4.9 GHz FCC Mask Comparison

-802.11a/j and 52 Subcarrier OFDM

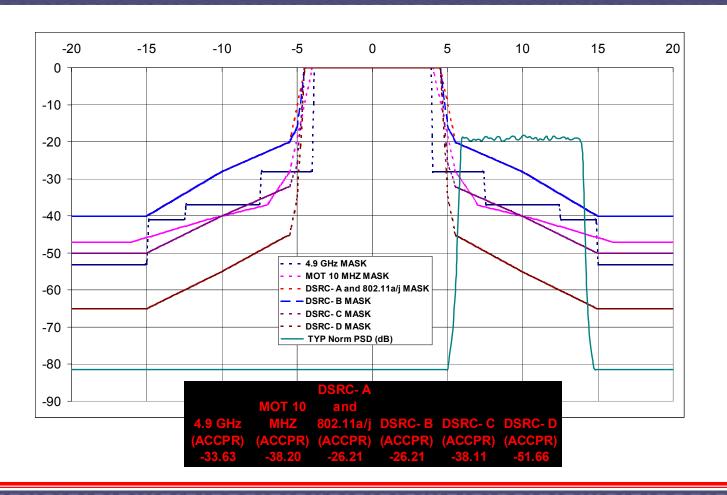
Bottom Line:

There is a problem with the Motorola and FCC Masks

The Outer OFDM Subcarriers will not fit in the Masks

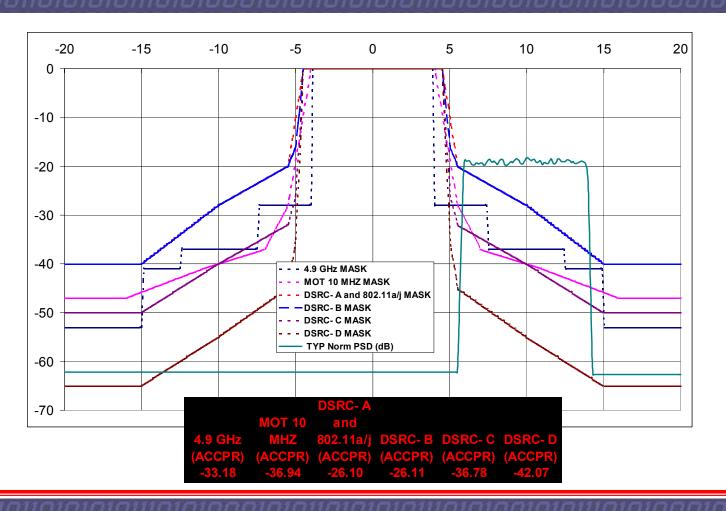
The Need for a Petition for Reconsideration

- The emissions mask requirements under these Rules will prohibit the use of any scaled 802.11 OFDM-based technology without serious modification.
- Our analyses, along with industry feedback, indicates that significant additional baseband processing, sub-carrier nulling, and software changes will be necessary to allow 802.11a-based physical layer technologies to operate in this band.
- As a result of this, our ability to use many of the open standardsbased technology in the band will be severely hindered
 - As will our capability to leverage the wider commercial market in order to reduce equipment costs.
- Furthermore, the creation of a niche broadband Public Safety market will only tend to stifle innovation within the allocation ultimately limiting Public Safety's access to new technologies and capabilities, and increasing costs.



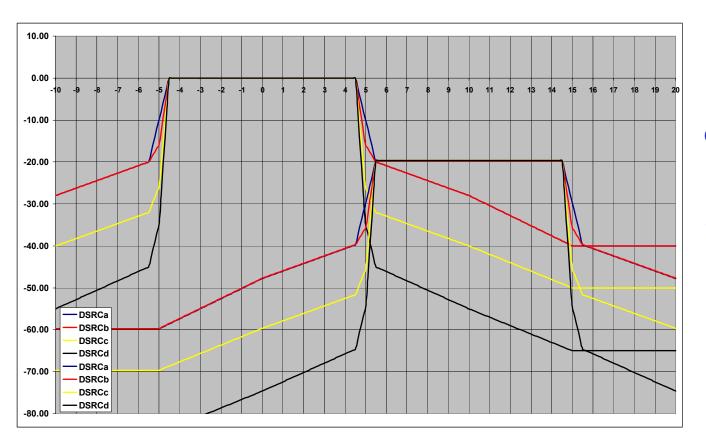
Examination of Adjacent Channel Performance

- We needed to look at adjacent channel performance in order to examine the costs and benefits of a "looser" mask
- Several approaches were taken, and the results compared
 - ACCPR, with transmitter emissions fitted to worst case Mask, and receiver filter to 802.11 OFDM-like waveform
 - ACPPR, with transmitter emissions fitted to worst case Mask, and receiver filter also fitted to Mask
 - ACP, with transmitter emissions fitted to worst case Mask
- All results compare favorably


Approximate ACCPR for Masks

Transmitter
emissions fitted
to worst case
Mask, and
receiver filter to
802.11 OFDMlike waveform

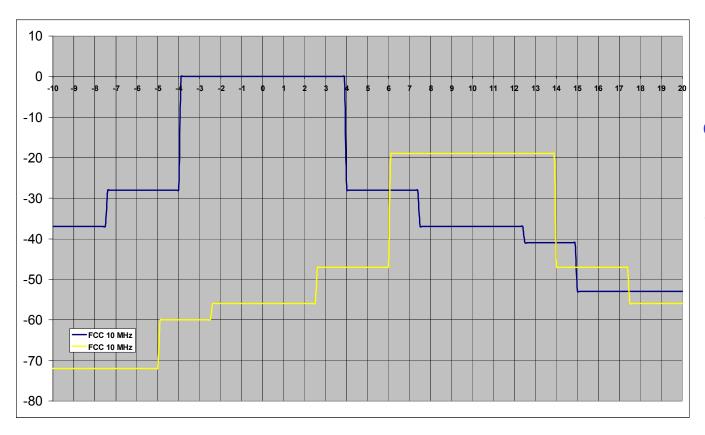
Approximate ACCPR for Masks



Transmitter
emissions fitted
to worst case
Mask, and
receiver filter to
802.11 OFDMlike waveform

Approximate ACCPR

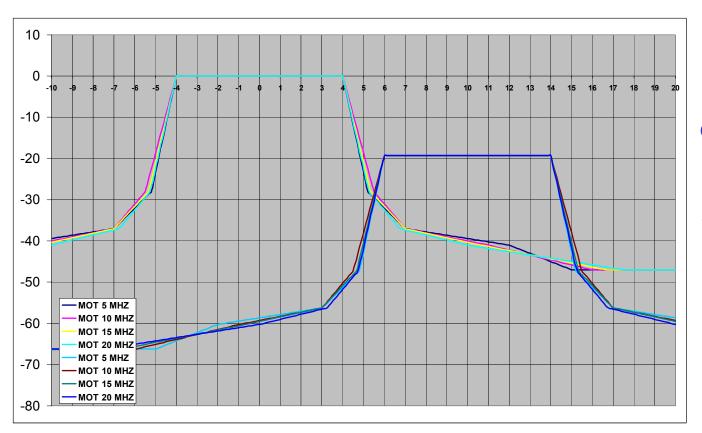
- 802.11a/j and DSRC Masks



ACPPR, with transmitter emissions fitted to worst case Mask, and receiver filter also fitted to Mask

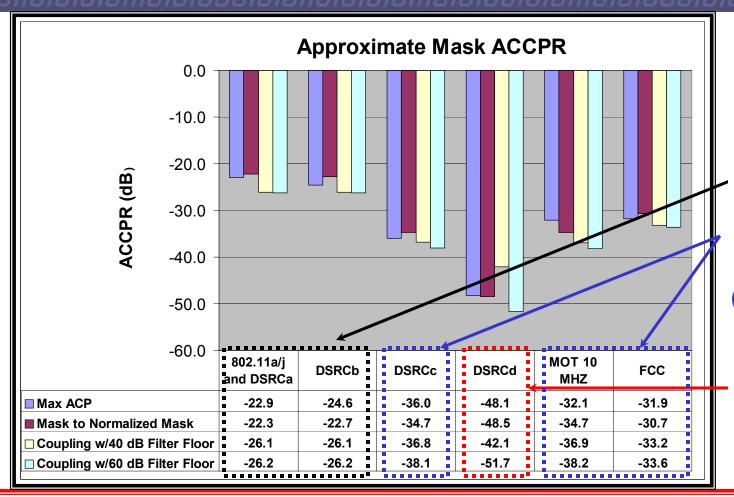
Approximate ACCPR

- FCC MO&O Mask



ACPPR, with transmitter emissions fitted to worst case Mask, and receiver filter also fitted to Mask

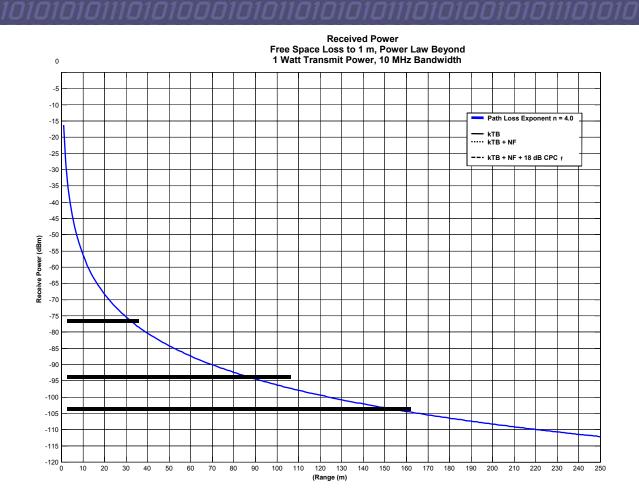
Approximate ACCPR


- Motorola Filing Masks

ACPPR, with transmitter emissions fitted to worst case Mask, and receiver filter also fitted to Mask

Approximate ACCPR for Masks

It is reasonable to look at three mask classes:

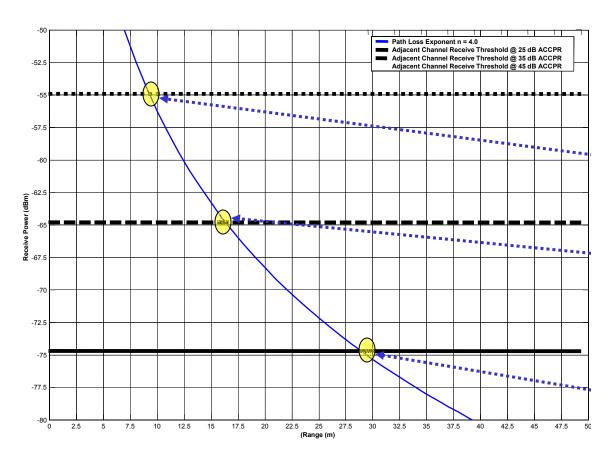

a "loose" mask (~25 dB ACCPR),

a "tight" mask (~35 dB ACCPR),

and a "very tight" mask (~45 dB ACCPR)

Approximate Range -High Reliability Case

Example:

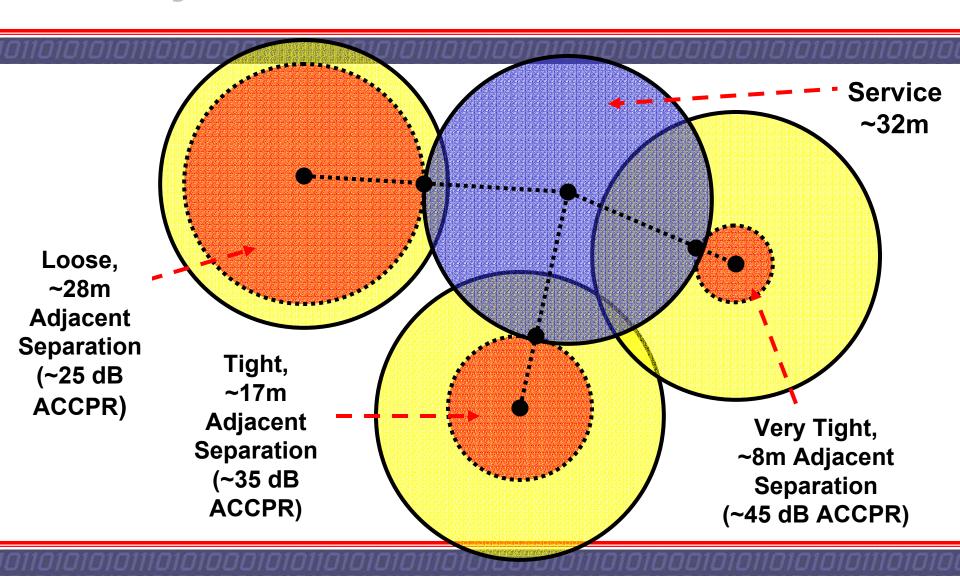

10 MHz Bandwidth, 1 W Transmit Power, 0 dBi Antennas

Receiver Noise Floor of ~94 dBm

NOTE:
In band interference
Should be kept at
least 6 dB below the
noise floor or <-100
dBm

Adjacent Channel Effects -High Reliability Case

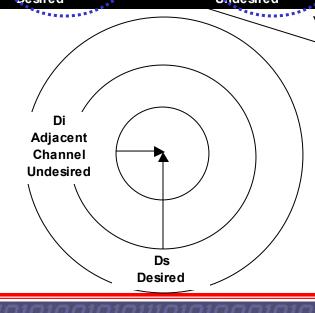
Adjacent Channel Interference Range


Very Tight Mask e.g. Mot or DSRC-d ~45 dB ACCPR, ~ 8 m

Tighter Mask e.g. FCC, Mot, or DSRC-c ~35 dB ACCPR, ~ 17 m

Loose Mask e.g. 802.11a/j or DSRC-a/b ~25 dB ACCPR, ~ 28 m

Adjacent Channel Reuse Effects



Adjacent Channel Reuse Effects -Other Scenarios

IOMO	011							110	ACCPR (dB)				-1	AC	CCPR (dB)		
										25	35	45			25	35	45	
		Power				Power				20 00 10				20 00 40			-10	
	Do	P	G	Law	Р	G	Law	Ро	Rs.	Rint	Rint	Rint	Ро	Rs.	Rint	Rint	Rint	
	(m)	(dBm)	(dBi)	Exp	(dBm)	(dBi)	Exp	(dBm)	(m)	(m)*	(m)*	(m)*	(dBm)	(m)	(m)*	(m)*	(m)*	Notes
Case I	1	30.00	2.15	3.00	30.00	2.15	4.00	-14.00	137	86	40	19	-14.00	40	28	16	9	AP to Mobile
Case II	1	30.00	2.15	4.00	30.00	2.15	4.00	-14.00	40	28	16	9	-14.00	40	28	16	9	Mobile to Mobile
Case III	1	30.00	2.15	3.00	20.00	0.00	4.00	-14.00	137	86	40	19	-26.00	18	14	8	5	AP to Portable
Case IV	1	30.00	2.15	4.00	20.00	0.00	4.00	-14.00	40	28	16	9	-26.00	-	14	8	5	Mobile to Portable
Case V	1	20.00	0.00	4.00	20.00	0.00	4.00	-26.00	18	14	8	5.	-26.00		14	8	5.	Portable to Portable
			Desired		U	ndesire	d		, D	esired				Un	desire	d		

^{*} To 2.15 dBi Receiver

Colocated AP Case											
Talk-In Interference Distance Talk-In Interference Ratio (Di/Ds) Probability											
	A	CCPR (d	ACCPR (dB)								
	25	35	45	25	35	45					
n = 3	0.58	0.27	0.13	19%	5%	1%					
n = 4	0.67	0.38	0.21	25%	8%	2%					

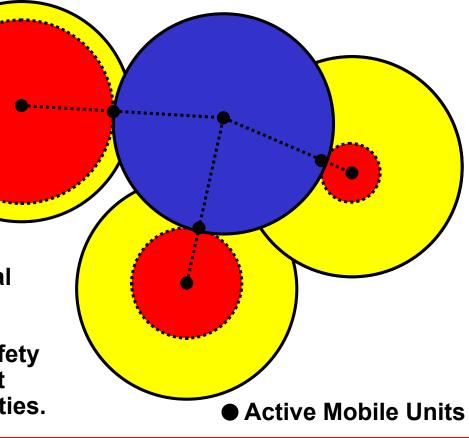
Results for "longer range" cases scale proportionally with the previous slides

Adjacent Channel Reuse Effects

All of the Masks Can Support a Cellular Reuse Pattern. A Co- and Adjacent channel cannot be simultaneously active in service area without interference (near far problem again). However, note that the 802.11a MAC senses the environment before 802.11a/j transmitting, therefore **FCC** and interference is either **DSRC-A** imperceivable, or is seen only as reduced throughput.

Adjacent Channel Reuse Effects

FCC Mask - Pro:


Adjacent channel users
Can get ~30 feet closer when
active. NOT A BIG DEAL!

FCC Mask Con:

Inability to use 802.11a-based standards

Inability to leverage the wider commercial market to reduce equipment costs.

Creation of a niche broadband Public Safety market, which stifles innovation and limit access to new technologies and capabilities.

Recommendations

- Petition for Reconsideration on the mask issue
 - May still allow a tighter mask on the outer channels (10-1 MHz channels) in order to protect Navy and RA operations
 - These will not see a scaled 802.11 OFDM anyway
- Propose that the FCC use the 802.11a/j & DSRC-a masks instead
 - Does not limit our technology options
 - Reserve the right to impose a tighter mask (e.g. DSRC b/c/d) at the RPC level - for cases where interference becomes an issue

